• 1.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Briegel, H., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Meenehan, S. M. et al. Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion. Phys. Rev. X 5, 041002 (2015).


    Google Scholar
     

  • 5.

    Muralidharan, S. et al. Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Fitzsimons, J. F. Private quantum computation: an introduction to blind quantum computing and related protocols. npj Quantum Inf. 3, 23 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    O’Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Reagor, M. et al. Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl. Phys. Lett. 102, 192604 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    O’Brien, C., Lauk, N., Blum, S., Morigi, G. & Fleischhauer, M. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Lambert, N. J., Rueda, A., Sedlmeir, F. & Schwefel, H. G. L. Coherent conversion between microwave and optical photons—an overview of physical implementations. Adv. Quantum Technol. 3, 1900077 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Balram, K. C., Davanço, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photon. 10, 346–352 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate. Nat. Phys. 16, 69–74 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Higginbotham, A. P. et al. Harnessing electro-optic correlations in an efficient mechanical converter. Nat. Phys. 14, 1038–1042 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of merit for quantum transducers. Preprint at https://arXiv.org/1610.01099v2 (2017).

  • 25.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Hong, S. et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203–206 (2017).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Keller, A. J. et al. Al transmon qubits on silicon-on-insulator for quantum device integration. Appl. Phys. Lett. 111, 042603 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Fang, K., Matheny, M. H., Luan, X. & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics 10, 489–496 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Cohen, J. D. et al. Phonon counting and intensity interferometry of a nanomechanical resonator. Nature 520, 522–525 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Johnson, M. Direct real time measurement of quasiparticle lifetimes in a superconductor. Phys. Rev. Lett. 67, 374–377 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Borselli, M., Johnson, T. J. & Painter, O. Measuring the role of surface chemistry in silicon microphotonics. Appl. Phys. Lett. 88, 131114 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Ren, H. et al. Two-dimensional optomechanical crystal cavity with high quantum cooperativity. Nat. Commun. 11, 3373 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Qiu, L., Shomroni, I., Seidler, P. & Kippenberg, T. J. Laser cooling of a nanomechanical oscillator to its zero-point energy. Phys. Rev. Lett. 124, 173601 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    MacCabe, G. S. et al.  Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

  • 38.

    Wang, C. et al. Measurement and control of quasiparticle dynamics in a superconducting qubit. Nat. Commun. 5, 5836 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Leave a Comment

    Your email address will not be published. Required fields are marked *

    Scroll to Top 200return