Demonstration of the trapped-ion quantum CCD computer architecture

  • 1.

    Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Gaebler, J. P. et al. High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett. 117, 060505 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A. & Lucas, D. M. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Christensen, J. E., Hucul, D., Campbell, W. C. & Hudson, E. R. High-fidelity manipulation of a qubit enabled by a manufactured nucleus. npj Quant. Inf. 6, 35 (2020).

    ADS 

    Google Scholar
     

  • 6.

    Wan, Y. et al. Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364, 875–878 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta, J. M. Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 10.

    Wang, Y. et al. Single-qubit quantum memory exceeding ten-minute coherence time. Nat. Photon. 11, 646–650 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Murali, P., Debroy, D. M., Brown, K. R. & Martonosi, M. Architecting noisy intermediate-scale trapped ion quantum computers. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA) 529–542 (IEEE, 2020).

  • 12.

    Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    ADS 

    Google Scholar
     

  • 13.

    Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015).

    CAS 

    Google Scholar
     

  • 14.

    Home, J. P. et al. Complete methods set for scalable ion trap quantum information processing. Science 325, 1227–1230 (2009).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 15.

    Kaufmann, H. et al. Scalable creation of long-lived multipartite entanglement. Phys. Rev. Lett. 119, 150503 (2017).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Labaziewicz, J. High Fidelity Quantum Gates with Ions in Cryogenic Microfabricated Ion Traps. PhD thesis, MIT (2008); http://web.mit.edu/cua/www/quanta/LabaziewiczThesis.pdf

  • 18.

    Maunz, P. L. W. High Optical Access Trap 2.0. Report SAND2016–0796R https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2016/160796r.pdf (Sandia National Laboratories, 2016).

  • 19.

    Bowler, R. et al. Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett. 109, 080502 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Kaushal, V. et al. Shuttling-based trapped-ion quantum information processing. AVS Quantum Sci. 2, 014101 (2020).

    ADS 

    Google Scholar
     

  • 21.

    Barrett, M. D. et al. Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic. Phys. Rev. A 68, 042302 (2003).

    ADS 

    Google Scholar
     

  • 22.

    Home, J. P. et al. Memory coherence of a sympathetically cooled trapped-ion qubit. Phys. Rev. A 79, 050305 (2009).

    ADS 

    Google Scholar
     

  • 23.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  • 24.

    Palmero, M., Bowler, R., Gaebler, J. P., Leibfried, D. & Muga, J. G. Fast transport of mixed-species ion chains within a paul trap. Phys. Rev. A 90, 053408 (2014).

    ADS 

    Google Scholar
     

  • 25.

    Home, J. P. & Steane, A. M. Electrode configurations for fast separation of trapped ions. Quantum Inf. Comput. 6, 289–325 (2006).

    CAS 
    MATH 

    Google Scholar
     

  • 26.

    Splatt, F. et al. Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap. New J. Phys. 11, 103008 (2009).

    ADS 

    Google Scholar
     

  • 27.

    Haberman, N. Parallel Neighbor Sort (or the Glory of the Induction Principle). CMU Computer Science Report https://kilthub.cmu.edu/articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_induction_principle_/6608258 (Carnegie Mellon University, 1979).

  • 28.

    Sørensen, A. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000).

    ADS 

    Google Scholar
     

  • 29.

    Lee, P. J. et al. Phase control of trapped ion quantum gates. J. Opt. B 7, S371–S383 (2005).

    CAS 

    Google Scholar
     

  • 30.

    Baldwin, C. H., Bjork, B. J., Gaebler, J. P., Hayes, D. & Stack, D. Subspace benchmarking high-fidelity entangling operations with trapped ions. Phys. Rev. Res. 2, 013317 (2020).

    CAS 

    Google Scholar
     

  • 31.

    Viola, L., Knill, E. & Lloyd, S. Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 32.

    Olmschenk, S. et al. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007).

    ADS 

    Google Scholar
     

  • 33.

    Magesan, E., Gambetta, J. M. & Emerson, J. Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Monroe, C. et al. Resolved-sideband raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Jordan, E. et al. Near ground-state cooling of two-dimensional trapped-ion crystals with more than 100 ions. Phys. Rev. Lett. 122, 053603 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Gambetta, J. M. et al. Characterization of addressability by simultaneous randomized benchmarking. Phys. Rev. Lett. 109, 240504 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Barrett, M. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Negnevitsky, V. et al. Repeated multi-qubit readout and feedback with a mixed species trapped-ion register. Nature 563, 527–531 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Eisert, J., Jacobs, K., Papadopoulos, P. & Plenio, M. B. Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000).

    ADS 

    Google Scholar
     

  • 40.

    McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 023023 (2016).

    ADS 
    MATH 

    Google Scholar
     

  • 41.

    Farhi, E. & Goldstone, J. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

  • 42.

    Aaronson, S. & Chen, L. Complexity-theoretic foundations of quantum supremacy experiments. Preprint at https://arxiv.org/abs/1612.05903 (2016).

  • 43.

    Jucevic, P. et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. Preprint at https://arxiv.org/abs/2008.08571 (2020).

  • 44.

    van Mourik, M. W. et al. Coherent rotations of qubits within a a surface ion-trap quantum computer. Phys. Rev. A 102, 022611 (2020).

    ADS 

    Google Scholar
     

  • 45.

    Mount, E. et al. Single qubit manipulation in a microfabricated surface electrode ion trap. New J. Phys. 15, 093018 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Kovalev, A. A. & Pryadko, L. P. Quantum kronecker sum-product low-density parity-check codes with finite rate. Phys. Rev. A 88, 012311 (2013).

    ADS 

    Google Scholar
     

  • 48.

    Blakestad, R. B. Transport of Trapped-ion Qubits within a Scalable Quantum Processor. PhD thesis, Univ. of Colorado (2010); https://www.nist.gov/system/files/documents/2017/05/09/blakestad2010thesis.pdf.

  • 49.

    Biercuk, M. J., Doherty, A. C. & Uys, H. Dynamical decoupling sequence construction as a filter-design problem. J. Phys. B 44, 154002 (2011).

    ADS 

    Google Scholar
     

  • 50.

    Harper, R., Flammia, S. T. & Wallman, J. J. Efficient learning of quantum noise. Nat. Phys. 16, 1184–1188 (2020).


    Google Scholar
     

  • 51.

    Meier, A. M. Randomized Benchmarking of Clifford Operators. PhD thesis, Univ. of Colorado (2006); https://arxiv.org/abs/1811.10040

  • 52.

    Hofmann, H. F. Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. Phys. Rev. Lett. 94, 160504 (2005).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Nielsen, M. A. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 303, 249–252 (2002).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 54.

    Abraham, H. et al. Qiskit: an Open-Source Framework for Quantum Computing https://zenodo.org/record/2562111#.YC6b8n7LdaR (2019).

  • Leave a Comment

    Scroll to Top
    Malcare WordPress Security