Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).
Sheldon, S. et al. Characterizing errors on qubit operations via iterative randomized benchmarking. Phys. Rev. A 93, 012301 (2016).
Jeffrey, E. et al. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett. 112, 190504 (2014).
Walter, T. et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).
Opremcak, A. et al. High-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. Phys. Rev. X 11, 011027 (2021).
Christensen, B. G. et al. Anomalous charge noise in superconducting qubits. Phys. Rev. B 100, 140503 (2019).
Vepsäläinen, A. P. et al. Impact of ionizing radiation on superconducting qubit coherence. Nature 584, 551–556 (2020).
Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).
Allison, J. et al. GEANT4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006).
Allison, J. et al. Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res. A 835, 186–225 (2016).
Shukla, P. & Sankrith, S. Energy and angular distributions of atmospheric muons at the Earth. Preprint at https://arxiv.org/abs/1606.06907 (2018).
Ramanathan, K. & Kurinsky, N. Ionization yield in silicon for eV-scale electron-recoil processes. Phys. Rev. D 102, 063026 (2020).
Brandt, D. et al. Semiconductor phonon and charge transport Monte Carlo simulation using GEANT4. Preprint at https://arxiv.org/abs/1403.4984 (2014).
Kelsey, M., Agnese, R., Brandt, D. & Redl, P. G4CMP: GEANT4 add-on framework for phonon and charge-carrier physics. https://github.com/kelseymh/G4CMP (2020).
Moffatt, R. A. et al. Spatial imaging of charge transport in silicon at low temperature. Appl. Phys. Lett. 114, 032104 (2019).
Martinis, J. M., Ansmann, M. & Aumentado, J. Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations. Phys. Rev. Lett. 103, 097002 (2009).
Lenander, M. et al. Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles. Phys. Rev. B 84, 024501 (2011).
Wenner, J. et al. Excitation of superconducting qubits from hot nonequilibrium quasiparticles. Phys. Rev. Lett. 110, 150502 (2013).
Wang, C. et al. Measurement and control of quasiparticle dynamics in a superconducting qubit. Nat. Commun. 5, 5836 (2014).
Serniak, K. et al. Hot nonequilibrium quasiparticles in transmon qubits. Phys. Rev. Lett. 121, 157701 (2018).
Ristè, D. et al. Millisecond charge-parity uctuations and induced decoherence in a superconducting transmon qubit. Nat. Commun. 4, 1913 (2013).
Catelani, G., Schoelkopf, R. J., Devoret, M. H. & Glazman, L. I. Relaxation and frequency shifts induced by quasiparticles in superconducting qubits. Phys. Rev. B 84, 064517 (2011).
Dell’Oro, S., Marcocci, S., Viel, M. & Vissani, F. Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016, 1–37 (2016).
Poda, D. & Giuliani, A. Low background techniques in bolometers for double-beta decay search. Int. J. Mod. Phys. A 32, 1743012 (2017).
Baudis, L. The search for dark matter. Eur. Rev. 26, 70–81 (2018).
Pirro, S. & Mauskopf, P. Advances in bolometer technology for fundamental physics. Annu. Rev. Nucl. Part. Sci. 67, 161–181 (2017).
Szücs, T. et al. Background in γ-ray detectors and carbon beam tests in the Felsenkeller shallow-underground accelerator laboratory. Eur. Phys. J. A 55, 174 (2019).
Aglietta, M. et al. Muon ‘depth–intensity’ relation measured by the lvd underground experiment and cosmic-ray muon spectrum at sea level. Phys. Rev. D 58, 092005 (1998).
Jillings, C. The SNOLAB science program. J. Phys. Conf. Ser. 718, 062028 (2016).
Alessandria, F. et al. Validation of techniques to mitigate copper surface contamination in CUORE. Astropart. Phys. 45, 13–22 (2013).
Aprile, E. et al. Material screening and selection for XENON100. Astropart. Phys. 35, 43–49 (2011).
Busto, J., Gonin, Y., Hubert, F., Hubert, P. & Vuilleumier, J.-M. Radioactivity measurements of a large number of adhesives. Nucl. Instrum. Methods Phys. Res. A 492, 35–42 (2002).
ILIAS Database. http://radiopurity.in2p3.fr (accessed November 2020).
Cardani, L. et al. Reducing the impact of radioactivity on quantum circuits in a deep-underground facility. Preprint at https://arxiv.org/abs/2005.02286 (2020).
Aumentado, J., Keller, M. W., Martinis, J. M. & Devoret, M. H. Nonequilibrium quasiparticles and 2e periodicity in single-Cooper-pair transistors. Phys. Rev. Lett. 92, 066802 (2004).
Patel, U., Pechenezhskiy, I. V., Plourde, B. L. T., Vavilov, M. G. & McDermott, R. Phonon-mediated quasiparticle poisoning of superconducting microwave resonators. Phys. Rev. B 96, 220501(R) (2017).
Martinis, J. M. Saving superconducting quantum processors from qubit decay and correlated errors generated by gamma and cosmic rays. Preprint at https://arxiv.org/abs/2012.06137 (2020).
Beckman, S. M. et al. Development of cosmic ray mitigation techniques for the LiteBIRD space mission. Proc. SPIE 10708, https://doi.org/10.1117/12.2314288 (2018).