Correlated charge noise and relaxation errors in superconducting qubits

  • 1.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Sheldon, S. et al. Characterizing errors on qubit operations via iterative randomized benchmarking. Phys. Rev. A 93, 012301 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Jeffrey, E. et al. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett. 112, 190504 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Walter, T. et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Opremcak, A. et al. High-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. Phys. Rev. X 11, 011027 (2021).

    CAS 

    Google Scholar
     

  • 7.

    Christensen, B. G. et al. Anomalous charge noise in superconducting qubits. Phys. Rev. B 100, 140503 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Vepsäläinen, A. P. et al. Impact of ionizing radiation on superconducting qubit coherence. Nature 584, 551–556 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Allison, J. et al. GEANT4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Allison, J. et al. Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res. A 835, 186–225 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Shukla, P. & Sankrith, S. Energy and angular distributions of atmospheric muons at the Earth. Preprint at https://arxiv.org/abs/1606.06907 (2018).

  • 13.

    Ramanathan, K. & Kurinsky, N. Ionization yield in silicon for eV-scale electron-recoil processes. Phys. Rev. D 102, 063026 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Brandt, D. et al. Semiconductor phonon and charge transport Monte Carlo simulation using GEANT4. Preprint at https://arxiv.org/abs/1403.4984 (2014).

  • 15.

    Kelsey, M., Agnese, R., Brandt, D. & Redl, P. G4CMP: GEANT4 add-on framework for phonon and charge-carrier physics. https://github.com/kelseymh/G4CMP (2020).

  • 16.

    Moffatt, R. A. et al. Spatial imaging of charge transport in silicon at low temperature. Appl. Phys. Lett. 114, 032104 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    Martinis, J. M., Ansmann, M. & Aumentado, J. Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations. Phys. Rev. Lett. 103, 097002 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Lenander, M. et al. Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles. Phys. Rev. B 84, 024501 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Wenner, J. et al. Excitation of superconducting qubits from hot nonequilibrium quasiparticles. Phys. Rev. Lett. 110, 150502 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Wang, C. et al. Measurement and control of quasiparticle dynamics in a superconducting qubit. Nat. Commun. 5, 5836 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Serniak, K. et al. Hot nonequilibrium quasiparticles in transmon qubits. Phys. Rev. Lett. 121, 157701 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Ristè, D. et al. Millisecond charge-parity uctuations and induced decoherence in a superconducting transmon qubit. Nat. Commun. 4, 1913 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Catelani, G., Schoelkopf, R. J., Devoret, M. H. & Glazman, L. I. Relaxation and frequency shifts induced by quasiparticles in superconducting qubits. Phys. Rev. B 84, 064517 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Dell’Oro, S., Marcocci, S., Viel, M. & Vissani, F. Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016, 1–37 (2016).

    Article 

    Google Scholar
     

  • 25.

    Poda, D. & Giuliani, A. Low background techniques in bolometers for double-beta decay search. Int. J. Mod. Phys. A 32, 1743012 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Baudis, L. The search for dark matter. Eur. Rev. 26, 70–81 (2018).

    Article 

    Google Scholar
     

  • 27.

    Pirro, S. & Mauskopf, P. Advances in bolometer technology for fundamental physics. Annu. Rev. Nucl. Part. Sci. 67, 161–181 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Szücs, T. et al. Background in γ-ray detectors and carbon beam tests in the Felsenkeller shallow-underground accelerator laboratory. Eur. Phys. J. A 55, 174 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Aglietta, M. et al. Muon ‘depth–intensity’ relation measured by the lvd underground experiment and cosmic-ray muon spectrum at sea level. Phys. Rev. D 58, 092005 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Jillings, C. The SNOLAB science program. J. Phys. Conf. Ser. 718, 062028 (2016).

    Article 

    Google Scholar
     

  • 31.

    Alessandria, F. et al. Validation of techniques to mitigate copper surface contamination in CUORE. Astropart. Phys. 45, 13–22 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Aprile, E. et al. Material screening and selection for XENON100. Astropart. Phys. 35, 43–49 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Busto, J., Gonin, Y., Hubert, F., Hubert, P. & Vuilleumier, J.-M. Radioactivity measurements of a large number of adhesives. Nucl. Instrum. Methods Phys. Res. A 492, 35–42 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    ILIAS Database. http://radiopurity.in2p3.fr (accessed November 2020).

  • 35.

    Cardani, L. et al. Reducing the impact of radioactivity on quantum circuits in a deep-underground facility. Preprint at https://arxiv.org/abs/2005.02286 (2020).

  • 36.

    Aumentado, J., Keller, M. W., Martinis, J. M. & Devoret, M. H. Nonequilibrium quasiparticles and 2e periodicity in single-Cooper-pair transistors. Phys. Rev. Lett. 92, 066802 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Patel, U., Pechenezhskiy, I. V., Plourde, B. L. T., Vavilov, M. G. & McDermott, R. Phonon-mediated quasiparticle poisoning of superconducting microwave resonators. Phys. Rev. B 96, 220501(R) (2017).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Martinis, J. M. Saving superconducting quantum processors from qubit decay and correlated errors generated by gamma and cosmic rays. Preprint at https://arxiv.org/abs/2012.06137 (2020).

  • 39.

    Beckman, S. M. et al. Development of cosmic ray mitigation techniques for the LiteBIRD space mission. Proc. SPIE 10708, https://doi.org/10.1117/12.2314288 (2018).

  • Leave a Comment

    Scroll to Top
    Malcare WordPress Security